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a b s t r a c t

This paper addresses centered and non centered equipartition tree problems into
p connected components (p -partitions). In the former case, each partition must
contain exactly one special vertex called center, whereas in the latter, partitions are
not required to fulfill this condition. Among the different equipartition problems
considered in the literature, we focus on: (1) Most Uniform Partition (MUP) and
(2) Uniform Partition (UP). Both criteria are defined either w.r.t. weights assigned
to each vertex or to costs assigned to each vertex–center pair. Costs are assumed
to be flat, i.e., they are independent of the topology of the tree. With respect to
costs, MUP minimizes the difference between the maximum and minimum cost of
the components of a partition and UP resorts to optimal min–max or max–min
partitions. We provide polynomial time algorithms for centered and non centered
versions of the MUP problem on trees when weights are assigned to each vertex. In
the non centered case, our results set as polynomial the complexity of this problem
which was an open question for several years. On the contrary, we prove that the
centered version of MUP with flat costs is NP-complete even on trees. For the UP
problem, we develop polynomial time algorithms for the max–min and min–max
centered p -partition problems on trees both in the case of weight and cost-based
objective functions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The essence of partitioning problems is to divide a set of units into groups or clusters so that units
belonging to the same group are as similar as possible, or the clusters are as balanced as possible. In
several applications such as community detection, image processing, wireless sensor networks and territorial
districting [1–4], the set of units can be represented by the set of vertices of a graph G where edges represent
relations between units [5].
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Many optimization problems can be modeled as graph partitioning problems, with different objectives and
constraints. Weights are often associated to each vertex and subsets of vertices, and an objective function
based on these weights must be maximized or minimized. Several applications also require a fixed number
p of clusters in the partition and/or capacity constraints on clusters. Sometimes, some vertices of the graph
represent centers so that in the partition each component must contain exactly one center [6,7]. In this case,
the resulting partition is called a centered partition of G. The classification of the vertex set of a graph into
centers and non centers is common in location problems, where centers represent facilities and the other
vertices represent clients (see, e.g., [8,9] and the references there in). For operational reasons, it may be
also required to introduce connectivity constraints. Connected partitions are such that the subgraphs of G

induced by the vertices of each cluster are connected [10].
Given a graph G, we study the problem of finding a connected partition of the set of vertices of G

into p components (p -partition). Weights are assigned to the vertices of G and a weight is defined for
each component of the partition. Then, the general aim is to balance the components’ weights as much as
possible. This kind of problems are known as uniform or equipartition problems. The objective function can
be formulated in different ways. One possibility is to minimize the difference between the maximum and the
minimum weight of a component (Most Uniform Partition—MUP). Alternatively, components’ weights can
be balanced using a min–max or max–min approach (Uniform Partition—UP). We study these problems
both in the non centered and centered cases, that is, when centered partitions are considered. It is also
meaningful to consider costs of assigning a vertex to a center. We assume that these costs are flat, i.e., they are
independent of the topology of G. The goal is to find a centered partition of G into p connected components
in which the costs of the components are as balanced as possible. We observe that the cost version is more
general than the weight version, since the latter case corresponds to the former when each unit has the
same assignment cost for all centers. In previous papers we already studied problems of this class on general
graphs, providing several NP-completeness results for special classes of graphs [6,7]. Due to the difficulty of
solving the above partition problems, in the literature, they have been widely studied focusing on tree graphs.

For the centered case and for arbitrary graphs, mathematical programming formulations based on an
exponential number of constraints and heuristic algorithms have been presented by several authors for the
problem of partitioning a given territory. Among these, we mention [11–13]. In [6,7] the authors present a
wide variety of centered partitioning problems on trees with different objective functions and equipartition
criteria. For each analyzed problem, the authors either provide a polynomial time algorithm, or prove that
it falls in the class of difficult NP-hard problems. In particular, in [7] the authors show that the min–max
and max–min problems are NP-hard even on planar graphs with vertex degree at most 3 and p = 2.

In the literature, equipartition problems were mainly considered in the non centered case, and many
papers examined the connected p -partition problem of a graph G with a weight-based objective function.
Lucertini et al. [14] presented a polynomial time algorithm for MUP on paths. Recently, Ito et al. [15]
provided a polynomial time algorithm for finding an (ℓ; u)-partition of a tree into p connected components.
This is, indeed, a feasibility problem since an (ℓ; u)-partition of a graph is such that the weight of each
component is at least equal to ℓ and at most equal to u.

Perl and Schach [16] presented an elegant shifting algorithm for the max–min connected p -partition of
a tree and Becker and Perl [17] found a variant of this algorithm for the min–max problem. Some other
variants of the shifting algorithm are presented in subsequent papers (see, e.g., [18]). Becker et al. [19] proved
that the above equipartition problems are NP-hard on grid graphs with three rows even in the case p = 2.
For the max–min problem, polynomial time algorithms exist for ladder graphs [20], while pseudo-polynomial
time algorithms on series parallel graphs and a Fully Polynomial Time Approximation Scheme (FPTAS) on
interval graphs were presented in [21] and [22], respectively.

Many other criteria exist for partitioning a graph G into a fixed number of connected components as
balanced as possible. Some authors consider the so called Minimum Diameter partitioning problem that
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consists of partitioning G into p connected subgraphs minimizing either the maximum difference between
the largest and the smallest weight in each subgraph or the sum of these (maximum) differences (see,
e.g., [23,24,13]). The variety of equipartition criteria introduced in the literature for partitioning problems is
rather wide, and, obviously, it is beyond the scope of the paper to provide a complete review on this subject.

In this paper we consider a tree graph and study both the centered and non centered versions of MUP
and UP problems. For MUP we provide a polynomial time algorithm for the centered and non centered
cases with a weight-based objective function (Section 3.1). This establishes an important result since the
computational complexity of this problem was set as an open problem for several years in the literature. On
the other hand, the MUP problem becomes difficult when the centered version with flat costs is considered.
In fact, we show that it is NP-hard on trees (Section 3.2). UP non centered problems on trees were already
studied in [17,16]. Here we study four centered UP problems on trees, i.e., finding the max–min and the
min–max connected p -partition of a tree in both cases of a cost- or weight-based objective function. For
all problems we provide polynomial time algorithms (Sections 4.1 and 4.2) some of them are found by
exploiting results in [17]. For the min–max cost p-centered partition problem, we propose a new polynomial
time algorithm with overall time complexity of O(n2p).

2. Notation and definitions

Given a tree T = (V, E), we assign non negative weights wv to the vertices v ∈ V , with |V | = n, and
consider an integer 2 ≤ p ≤ |V | − 1. A p -partition of T is a partition of the set V into p non empty
subsets, {C1, . . . , Cj , . . . , Cp}, such that each subset induces a subtree of T . The radius r of T is the minimum
eccentricity of the vertices in V , where the eccentricity of v ∈ V is the maximum of the distances from v to a
vertex in the tree. Let Tq be the tree rooted at a vertex q. For some problems analyzed in this paper the tree
does not have to be rooted, but for some other cases a root is needed in order to facilitate the algorithms.
The root implies that all the edges are directed away from q and, given a vertex v, we denote by Tv the
subtree of Tq rooted at v. An edge e = (v, u) emanating from v in Tv means that u belongs to the set of
children of v. If for a vertex v the set of its children is empty, then v is a terminal vertex or a leaf of Tq. Given
a subtree Tv and an edge e emanating from v, we denote by Tv,e the subtree of Tq formed by Tu ∪ (v, u).

In addition to general trees we also consider centered trees. In this case we assume that V is partitioned
into two subsets S and U such that S ⊂ V with |S| = p. S is the set of centers and U = V \ S is the set
of units. In centered trees we consider also a cost function c : U × S → R+ ∪ {0} which associates a cost
cis to each pair (i, s), i ∈ U , s ∈ S. We assume that the costs are flat, i.e., for each unit i the costs cis are
independent of the topology of T . A centered partition of T is a p -partition such that each subset contains
exactly one vertex in S. The cost of the component Cs centered in s is defined as the sum of the costs cis of
the units i ∈ Cs. The weight of the component Cs is given by the sum of the weights of the vertices v ∈ Cs.

In this paper, given a tree T , we study the following problems:

(i) Find a partition of T into p connected components that minimizes the difference between the maximum
and the minimum cost or weight of a component (most uniform connected p -partition problem).

(ii) Find a partition of T into p connected components that (i) maximizes the minimum cost or weight of
a component (max–min connected p -partition problem) (ii) minimizes the maximum cost or weight
of a component (min–max connected p -partition problem).

All the above listed problems are analyzed both in the centered and non centered cases. Problem (i) belongs to
the class of MUP problems, while (ii) belongs to the class of UP problems. In particular, for the weight version
of (i) we provide, for the first time in the literature, polynomial time algorithms, while for the cost version we
prove that the most uniform connected p -partition problem is NP-hard even on trees. In addition, we solve
UP problems by adapting already existing approaches for all but one of them. In fact, for the cost version
of the min–max connected p -partition problem we introduce a new efficient polynomial time procedure.
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3. Most uniform partition of trees

The MUP problem was widely studied in the literature. NP-hardness results were established for arbitrary
graphs and polynomial time algorithms were provided for very special classes of graphs like paths [14]. To the
best of our knowledge, this problem is still open on trees. Here, we close this gap by providing a polynomial
time algorithm for MUP, both in the centered and non centered cases, when a weight-based objective function
is considered. Conversely, we show that in the centered case and with flat costs, the problem is NP-hard on
trees. This also implies that even the feasibility problem of finding an (ℓ; u)-partition of a tree is NP-hard.

3.1. Most uniform weighted partition problem

In this section we study the MUP problem on trees and a weight-based objective function. We solve the
problem in polynomial time. The general idea of the algorithm is based on the following fact. Consider an
optimal partition of the given tree T , and let CM and Cm denote the maximum and the minimum weight
components, respectively. Since the graph is a tree, there exists a unique path joining these two components
and at least one edge of this path must be cut in the optimal partition. This allows to identify two subtrees
T1 and T2 such that the maximum weight of a component in the MUP optimal partition of T is equal to
the optimal value of a min–max weight partitioning problem on one of the two subtrees, while the minimum
weight of a component in the MUP optimal partition of T is equal to the optimal value of a max–min weight
partitioning problem on the other subtree.

Then the MUP optimal partition can be found by repeatedly solving min–max and max–min problems
on all possible pairs of subtrees T1 and T2 that can be obtained by removing from T one edge at a time.
At each iteration, the algorithm finds a min–max weight partition of T1 in k components and a max–min
weight partition of T2 in (p − k) components (and vice versa), identifying the two corresponding optimal
values U and L. These two values are used to check if there exists a (L; U)-partition of the whole tree T

into p connected components.
The following procedure solves the most uniform non centered partition problem on trees with a weight-

based objective function.

———————————————————————————————————–
algorithm MUP

set D∗ :=
∑

v∈V

wv

for each e ∈ E
let T1 = (V1, E1) and T2 = (V2, E2) be the subtrees of T obtained by removing e
for k = 1, . . . , min{p − 1, |V1|}

find a min–max k-partition of T1 and let U be the maximum weight of a component
find a max–min (p − k)-partition of T2 and let L be the minimum weight of a component
if 0 ≤ U − L < D∗ then

if there exists a (L; U)-partition πLU of T into p connected components
set D∗ := U − L and π∗ := πLU

find a max–min k-partition of T1 and let L be the minimum weight of a component
find a min–max (p − k)-partition of T2 and let U be the maximum weight of a component
if 0 ≤ U − L < D∗ then

if there exists a (L; U)-partition πLU of T into p connected components
set D∗ := U − L and π∗ := πLU

π∗ is a MUP partition
D∗ is the difference between the maximum and the minimum weight of a component in π∗

———————————————————————————————————–
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Theorem 1. The MUP problem on trees can be solved in O(p5n2) time.

Proof. The proof is based on the following remarks.

• Let π∗ be an optimal MUP partition of T into p connected components, and let CM and Cm, be two
components having maximum and minimum weight, respectively. W.l.o.g. we can assume CM ̸= Cm.
Since T is a tree there is a unique path P = (v1, . . . , vq) joining CM and Cm such that v1 ∈ CM , vq ∈ Cm

and vi ̸∈ CM ∪ Cm, i ̸= 1, q.
• Since CM and Cm are different, at least one edge (vi, vi+1) in P is cut in π∗.
• Let TM and Tm be the two subtrees obtained by removing (vi, vi+1) from T containing CM and Cm,

respectively. Let π∗
M and π∗

m be the partitions induced by π∗ in TM and Tm, respectively, and let k

and p − k be the corresponding number of components.
Then π∗

M must be an optimal solution of the min–max k-partition problem on TM , otherwise π∗ would
not be a MUP partition of T into p components. Similarly, π∗

m must be an optimal partition of the
max–min (p − k)-partition problem on Tm.

It follows that π∗
M and π∗

m can be found by an exhaustive search in T which removes one edge at a time
and solves the min–max k-partition problem in one subtree and the max–min (p − k)-partition problem
on the other (and vice versa) for all possible values of k and (p − k). Since these two problems are solved
independently, at each iteration one must check whether the current min–max and max–min optimal values
U and L are feasible or not w.r.t. the (L; U)-partition problem into p connected components of the whole
tree T . From a complexity viewpoint, the max–min and min–max p -partition problems can be solved in
O(p2r +pn) time [17] and in O(rp(p+log d)+n) time [25], respectively, where r is the radius of T and d the
maximum degree of a vertex. For the (L; U)− partition problem [15] provides an O(p4n) time algorithm.
Since these problems must be solved twice for all edges of T and values of k in algorithm MUP, the overall
time complexity for solving the MUP problem is O(p5n2). □

For the centered version of the above MUP problem, it can be solved using the same algorithm, but after
the introduction of modified weights for the vertices of the tree. Consider the subset S ⊂ V of the centers
of T and let W =

∑
i∈U wi. We define the following weights:

wv =
{

wv if v ∈ U
wv + W if v ∈ S

(1)

Adopting these weights, any connected p partition of T containing more than one center in a component
will never be optimal for MUP. Therefore, algorithm MUP will produce only p-centered partitions. Since the
tree is centered, at each iteration of algorithm MUP the number of components in the two subtrees T1 and
T2 is fixed. This implies that the overall time complexity to solve the centered version of the MUP problem
is O(n2p4).

3.2. Most uniform centered partition problem with flat costs

In the following we prove that the Most Uniform Centered Partition (MUCP) problem with flat costs is
NP-complete on trees. The decision version of MUCP can be stated as follows:

Input: A tree T = (V, E), two subsets U, S ⊆ V , with |S| = p, such that U ∩ S = ∅ and U ∪ S = V . Non
negative integer flat costs cis, ∀ i ∈ U and s ∈ S and a rational K ≥ 0.
Question: Is there a p-centered partition such that the difference between the maximum and minimum costs
of the components is less than or equal to K?
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Theorem 2. The Most Uniform Centered Partition problem with flat costs is NP-complete on trees.

Proof. The reduction is from SUBSET-SUM which is a well-known NP-complete problem [26]: given n

positive integers ai, i = 1, . . . , n, with
∑n

i=1ai = Q, is there a subset H ⊆ {1, . . . , n} such that
∑

i∈Hai = Q
2 ?

Let us consider the tree T in Fig. 1, where the 2n + 1 circular vertices are the units of T , and the n + 1
squared vertices represent the centers of T . For each unit i = 0, . . . , n assign the following flat costs:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c0sk
= 0, if k = 0

c0sk
= M, if k = 1, . . . , n

cis0 = ai, ∀ i = 1, . . . , n
cisk

= 0, ∀ i = 1, . . . , n and k = i
cisk

= M, ∀ i = 1, . . . , n and k ̸= i

with M ≫ Q. To each unit n + i, i = 1, . . . , n, we assign the following costs:⎧⎨⎩c(n+i)sk
= Q

2 , ∀ i = 1, . . . , n, with k = i or k = 0

c(n+i)sk
= M, ∀ i = 1, . . . , n and k ̸= i

Set K = 0. Assume we have a solution of SUBSET-SUM, H, then we obtain a solution for MUCP by
assigning units i, i ∈ H, to center s0, and units n + i, i ∈ H, to center si. Note that unit i = 0 is always
assigned to s0. We assign all the other units labeled k and n + k, k ̸∈ H, to the corresponding centers sk.
In this way, we have a (connected) centered partition in which all the component’s costs are equal to Q

2 , so
that the difference between the maximum and minimum cost of the components is exactly equal to K = 0.

Assume now that we have a solution of MUCP where the difference between the maximum and minimum
costs of the components is equal to 0. Such a solution can be obtained only if the unit i = 0 is assigned to
s0, otherwise the component centered in s0 has cost equal to 0, and the maximum cost of a component of
the partition is equal to M + Q

2 (it is given by the component to which i = 0 is assigned). In addition, we
have to assign a subset of units to center s0 in order to obtain that the cost of the component centered in
s0 is equal to Q

2 . Let H be the index set of units assigned to s0. All the other units with label k, k ̸∈ H,
must be assigned to the corresponding centers sk, as well as those with labels n + k, k = 1, . . . , n. Thus,
we obtain a (connected) centered partition where the cost of each component is equal to Q

2 , so that the
difference between the maximum and minimum costs is 0. To satisfy the connectivity constraint, any other
feasible centered partition has at least a component with cost greater than M and one with cost equal to
0. Thus, H is a solution of SUBSET-SUM. Hence, solving MUCP with flat costs on a tree is the same as
solving SUBSET-SUM. Since it is easy to verify that MUCP is in NP, it is NP-complete. □

Corollary 1. The problem of finding a centered (L; U)-partition with flat costs is NP-complete on trees.

Proof. We can exploit the proof of Theorem 2. Actually, it suffices to consider L = Q
2 − δ and U = Q

2 ,
with 0 < δ < 1 and rational. □

4. Uniform centered partitions of trees

The main results on UP problems on trees were presented in [17,16] where the authors provide a general
technique for partitioning trees with different objectives that is based on shifting operations and greedy
decisions. Specializing this technique with a suitable choice for weights and costs, in this section we provide
polynomial time algorithms for three out of our four UP problems. On the other hand, for the min–max UP
problem with flat costs, we develop an efficient optimization procedure based on the solution of a sequence
of feasibility problems.
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Fig. 1. The tree T used in the proof.

4.1. Max–min centered partition of trees

In this section we study the max–min (cost/weight) centered partition problem of a tree T and we show
how this problem can be solved in polynomial time by using results from [17]. Given the family F of all
the possible subsets of V , they define a weighting function H : F → R+ ∪ {0} that assigns a weight H(Z)
to each subset Z in F . Among others, they solve the problem of finding a partition of T into p connected
components, {Z1, . . . , Zp}, that maximizes the minimum of H(Zj), j = 1, . . . , p, by applying a shifting
algorithm originally proposed in [16]. We refer to this problem as BP-max–min problem and observe that
the only difference with our problem is that [17] does not consider centered partitions. For the BP-max–min
problem the shifting algorithm applies when H(·) is a basic weighting function, i.e., a function satisfying the
following property: if Z1, Z2 ∈ F are such that Z1 ⊆ Z2 then H(Z1) ≤ H(Z2).

Consider our problem of finding a max–min cost centered partition {C1, . . . , Cp} of T . Let M =∑
i∈U maxs∈Scis. For a subset C of V we define the above weighting function H(·) as follows:

H(C) =

⎧⎪⎪⎨⎪⎪⎩
M |C ∩ S| +

∑
i∈C∩U

max
s∈C∩S

cis if C ∩ S ̸= ∅∑
i∈C

min
s∈S

cis if C ∩ S = ∅
(2)

It is easy to see that the above weighting function is basic. Notice that when {C1, . . . , Cp} is a centered
partition, for a component Cs centered in s one has:

H(Cs) = M +
∑

i∈Cs∩U

cis (3)

Theorem 3. A partition {C1, . . . , Cp} is an optimal solution of the max–min cost centered partition problem
on a tree T if and only if it is an optimal solution of the BP-max–min problem with weighting function H(·).

Proof. Consider the following facts.

i. Since T is a tree (and therefore it is connected) and S ⊂ V , there always exists a centered partition.
ii. Any optimal solution of BP-max–min with weighting function H(·) is centered. Actually, in any

partition of T into p connected components that is not centered there is always (at least) a component
that does not contain any center, implying that the weight of this component is smaller than the
minimum weight of any centered partition.

iii. For any centered partition, the weight H(Cj) of a component Cj centered in sj is given by formula (3).
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The above facts imply that any optimal solution to our max–min cost centered partition problem with basic
weighting function H(·) is optimal also for BP-max–min and vice versa. □

From Theorem 3 it follows that the max–min cost centered partition problem can be solved by the shifting
algorithm for the BP-max–min problem in O(p2r +pn) time, where r is the radius of T . We observe that the
same basic weighting function (2) and the same shifting algorithm can be applied also to solve our max–min
weight centered partition problem by setting for each i ∈ U : cis = wi, ∀s ∈ S.

4.2. Min–max centered partition of trees

In [17] Becker and Perl also provide a shifting algorithm for the problem of finding a partition of a tree
into p connected components that minimizes the maximum weight of a component (BP-min–max problem).
The algorithm works under the condition that the weighting function H(·) (defined in Section 4.1) on the
family F is invariant. The min–max weight centered p partition problem on T can be solved in polynomial
time by exploiting the shifting algorithm in [17], as illustrated in the following.

According to [17], let v be any vertex of the rooted tree Tq and e1 = (v, u1) and e2 = (v, u2) two edges
emanating from v in Tv. Denote by Tv,e1 and Tv,e2 the subtrees given by Tu1 ∪ (v, u1) and Tu2 ∪ (v, u2),
respectively. Let T ′ denote a subtree of Tq in which v is a leaf. The weighting function H(·) is invariant if:

(i) H(·) is basic;
(ii) for any vertex v and any pair of edges e1 = (v, u1) and e2 = (v, u2) emanating from Tv one has:

H(Tu1 ∪ (v, u1)) ≤ H(Tu2 ∪ (v, u2)) ⇒ H(Tu1 ∪ (v, u1) ∪ T ′) ≤ H(Tu2 ∪ (v, u2) ∪ T ′).

where in the notation we refer to a component of the partition of T as a subtree of the rooted tree Tq.
For the min–max weight centered p partition problem on T , given a subset C of V , we define the weighting

function H(·) as follows:

H(C) =
∑
v∈C

wv

where we consider the weights wv defined in formula (1) in order to take into account that our partition
is centered. Since H(C) is the sum of the weights of the vertices in C, it is among the weighting functions
that Becker and Perl proved to be invariant. For this reason their algorithm applies leading to the following
theorem for which the proof is analogous to the one of Theorem 3.

Theorem 4. A partition {C1, . . . , Cp} is an optimal solution of the min–max weight centered partition
problem on a tree T if and only if it is an optimal solution of the BP-min–max problem with weighting
function H(·).

The most efficient implementation of the shifting algorithm for the BP-min–max problem was provided by
Perl and Vishkin in [25] and requires O(rp(p + log d) + n) time, where r and d are the radius of T and the
maximum degree of a vertex, respectively.

When the min–max centered p partition on T is formulated by an objective function based on costs
instead of weights, the application of the shifting algorithm in [17] is not straightforward. In fact, the
weighting function H(·) defined in formula (2) is not invariant as the following simple example shows.

Example. Consider the simple tree T in Fig. 2a, where v, w, and z are units, with w and z two leaves,
and s̄ a center of T .
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Fig. 2. The tree T used for the example.

Let mins∈Scvs = mins∈Scws = 1 and mins∈Sczs = 2. Let cvs̄ = cws̄ = 3, and czs̄ = 2 be the assignment costs
of the three units.

Denote by Tv,e1 = (v, w) = C1 and Tv,e2 = (v, z) = C2 the two components with H(C1) = 2 and H(C2) = 3
(Fig. 2b). According to the definition of invariant functions, consider T ′ = (s̄, v), so that C′

1 = (s̄, v) ∪ (v, w)
and C′

2 = (s̄, v) ∪ (v, z) (Fig. 2c). We have H(C1) < H(C2), but:

H(C′
1) = M + 6 > H(C′

2) = M + 5.

with M =
∑

i∈U maxs∈Scis. Thus, the weighting function H(·) in formula (2) is not invariant.
For the min–max cost centered p partition we propose a new polynomial time algorithm based on the

solution of a sequence of feasibility problems. At each iteration, for a fixed δ > 0, the algorithm finds a
centered partition with maximum component cost bounded above by δ (δ-centered partition). Note that
since T is a tree, a unit i cannot be assigned to a center s such that the unique path from i to s contains
another center s′ ̸= s. As a consequence, we can suppose that all leaves of T are centers. For a fixed value
δ, if a δ-centered partition of T exists, it can be found by visiting bottom-up T rooted at a leaf r (denoted
by Tr). Let Ti be the subtree of Tr rooted at i, Si the set of its centers, and p(i) the parent of i in Tr, i ̸= r.
The idea of the algorithm is to add as much cost as possible to the components in the bottom part of the
tree without exceeding the given limit δ. If a unit i can be assigned to a center in Ti, such center is selected
in Si as the one that minimizes the sum of the costs; if not, i must be assigned to the same center as p(i) in
S \ Si. In this way, during the algorithm, for the current vertex i and for each center s ∈ Si we are able to
record the minimum cost of a component containing i and s. A δ-centered partition of T exists if, at the end,
all these costs are smaller than or equal to δ. During the algorithm we compute the following quantities:

• c̄(i, s), i ∈ V and s ∈ S: the sum of the costs chs of the units h in Ti that must be assigned to the
same center as i in any δ-centered partition of T ;

• w∗(i, s), i ∈ V , s ∈ Si: the minimum cost of a component containing i and s in a centered partition of
Ti whose components have cost at most δ. At the beginning we set w∗(i, s) = M > δ, i ∈ V , s ∈ Si;

• s∗(i), i ∈ V : center to which vertex i is assigned to in the final δ-centered partition if it exists; notice
that for any center s we have s∗(s) = s.
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We also introduce the binary indicator r(p(i), i), i ∈ U , which is set to 1 when i must be necessarily assigned
to the same center as its parent p(i) in any δ-centered partition of T .
———————————————————————————————————–
algorithm δ-centered partition
Part 1: verify feasibility

root T at a leaf r
for each i ∈ V and s ∈ S set c̄(i, s) := cis

for each i ∈ U and s ∈ S set w∗(i, s) := M > δ
for each s ∈ S set w∗(s, s) := css

for each i ∈ V \{r} set r(p(i), i) := 0
visit Tr bottom-up starting from its leaves

if the visited vertex is a unit i
for each j such that p(j) = i and r(i, j) = 0

for each s ∈ Sj such that w∗(j, s) ≤ δ set w∗(i, s) := w∗(j, s) + c̄(i, s)
if w∗(i, s) > δ for all s ∈ Si then

set r(p(i), i) := 1 and c̄(p(i), s) := c̄(p(i), s) + c̄(i, s) for all s ∈ S\Si

else if the visited vertex is a center s ∈ S
if c̄(s, s) > δ then STOP: the problem is infeasible

Part 2: find a δ-centered partition
for each s ∈ S set s∗(s) := s
visit Tr top down level by level and for each unassigned unit i

if r(p(i), i) = 1 then
set s∗(i) := s∗(p(i))

else
find a center s in Ti such that w∗(i, s) ≤ δ
visit bottom up the path from s to i and for each unit j in the path set s∗(j) := s

———————————————————————————————————–

Theorem 5. Algorithm δ-centered partition correctly finds a δ-centered partition of T , if it exists, or
it establishes that the problem is infeasible in O(np) time.

Proof. During the algorithm, for each visited vertex i and for each s ∈ Si, w∗(i, s) and c̄(s, s) are computed
coherently with the definitions given before. This is true at the beginning when the first visited vertex is a
leaf and therefore it is a center. Suppose that the values are correct at a given iteration of the algorithm.
Case 1: the next vertex to be visited is a unit i. Suppose that j is a child of i and notice that in any partition
where i is assigned to a center in Sj also j must be assigned to the same center. Hence in order to evaluate
w∗(i, s) for s ∈ Sj one has to consider the value w∗(j, s), that has been already computed by the algorithm.
If r(i, j) = 1 then w∗(j, s′) > δ for all s′ ∈ Sj and i cannot be assigned to s. Otherwise w∗(i, s) is given by
w∗(j, s)+ c̄(i, s). If this value is less than or equal to δ, i can be assigned to s; otherwise i cannot be assigned
to s and it must be assigned to the same center as its parent p(i). In the latter case the costs of p(i) to the
centers in S \ Si must be updated by adding the cost of unit i. Therefore, the values of w∗(i, s) for s ∈ Si

and c̄(i, s) for s ∈ S \Si are correct. Case 2: the next vertex to be visited is a center s and c̄(s, s) > δ then in
any feasible partition the cost of the component containing s will be greater than δ and then the problem is
infeasible. For the complexity, note that Part 1 of the algorithm considers each pair i, s, i ∈ V and s ∈ S at
most once and for each pair the computation requires a constant time. Hence, Part 1 has time complexity
O(np). Part 2 visits each vertex once and for each vertex the computation requires a time proportional to the
number of centers. Hence Part 2 has time complexity O(np) and the overall time complexity is O(np). □

In order to solve the min–max centered partition problem, algorithm δ-centered partition must be
repeatedly applied for different values of δ. We observe that not all possible values are relevant, but only
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a restricted set of them must be considered. The following algorithm finds a connected min–max centered
partition of T with flat costs efficiently by implementing an appropriate scheme for the selection of the
values of δ to analyze.
———————————————————————————————————–
algorithm min-max centered partition

let δ =
∑

i∈U mins∈Scis (δ is a lower bound of the optimal value)
repeat

verify the feasibility of the δ-centered partition problem by applying
Part 1 of the algorithm δ-centered partition
if the problem is infeasible then

set δ equal to the minimum among the w∗(i, s) such that r(p(i), i) = 1
until the δ-centered partition is feasible
find an optimal partition by applying Part 2 of the algorithm δ-centered partition

———————————————————————————————————–

Theorem 6. Algorithm min-max centered partition correctly solves the min–max cost centered partition
problem on a tree in O(n2p) time.

Proof. Suppose that for δ = δ1 the δ-centered partition problem is infeasible. In this case, when algorithm
δ-centered partition stops, c̄(s′, s′) > δ1 for some visited center s′. Let δ2 be the minimum among the
values w∗(i, s) such that r(p(i), i) = 1, and notice that δ2 > δ1. By applying again algorithm δ-centered
partition with δ = δ′, δ1 < δ′ < δ2, nothing would change in the algorithm w.r.t. δ1 and, in particular, the
value of c̄(s′, s′) would be equal to the one obtained for δ1 and then the problem would be again infeasible.
It follows that δ2 is a lower bound of the optimal value of the min–max partitioning problem and can be
considered as next value of δ.

Note that, if i, s is the pair such that w∗(i, s) = δ2, for all δ ≥ δ2 at the end of the algorithm we will
have r(p(i), i) = 0 and then unit i is not considered again for finding a new value of δ > δ2. It follows that
the number of different values of δ to consider is O(n) and the overall time complexity for the min–max
centered cost partition problem is O(n2p). □

An alternative approach compared to algorithm min-max centered partition consists in a binary search
on all the possible values of δ with a time complexity of O(np log C̄), where C̄ is an upper bound on the
cost of a component (for example C̄ =

∑
i∈U maxs∈Scis). If we assume that the costs are bounded above by

some polynomial M(n, p), this approach provides an improved time complexity of O(np log n).

5. Conclusions

Equipartition criteria define an important family of partition problems. In this paper we have restricted
ourselves to consider two types of equipartition problems on graphs: Most Uniform Partition and Uniform
Partition problems. Most of our results are devoted to tree graphs where we provide polynomial time
algorithms for: 1) the centered and non centered MUP problems with a weight-based objective function;
and 2) centered UP problems with a weight or flat cost-based objective function. The former results set the
polynomial complexity of MUP problem on trees which was open before in the literature. For the centered
MUP problem with flat costs, we have proven that it is NP-complete even on trees.

Our results provide efficient polynomial time algorithms for equipartition problems on trees, but it is also
interesting to address similar problems on general graphs, where these algorithms do not apply especially for
large networks (huge number of vertices). Future research in this area should develop exact algorithms for
equipartition problems on general graphs related to large data set (big data) based on integer programming
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formulations. We are also interested in the study of heuristic algorithms capable to provide good quality
solutions whenever the exact methods are limited by the complexity of the problems.
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